Welcome to your Uncovering the Top Machine Learning Quizzes 2024 (Part 2) This quiz has multiple choice questions and each has only one correct answer.
Total Questions : 25
To pass this quiz you need to score 80% or above.
Time Provided : 45 minutes
Today's Date : 4 December 2025
All the best!!
Name
Email
1. Which of the following describes a soft margin in SVM?
2. What is the purpose of using multiple decision trees in Random Forest?
3. Which kernel function is commonly used in SVM for nonlinear classification?
4. Which of the following situations would most likely benefit from using an SVM with an RBF kernel?
5. Which of the following is an advantage of using Random Forest?
6. Which of the following parameters can be adjusted to control the complexity of a Random Forest model?
7. What happens to the performance of Random Forest when the number of trees increases?
8. Which of the following methods is an ensemble technique that uses multiple decision trees?
9. Which of the following is a limitation of Support Vector Machines?
10. What is the primary advantage of using SVM with a linear kernel?
11. In an SVM model, what is the primary purpose of the "kernel trick"?
12. What is the role of feature importance in Random Forest?
13. What does the "k" in k-Nearest Neighbors represent?
14. What is the purpose of the kernel trick in SVM?
15. What is a Random Forest?
16. What is the out-of-bag (OOB) error in Random Forest?
17. Which technique can be used to prevent overfitting in decision trees?
18. What does the decision boundary represent in an SVM?
19. Which of the following is a limitation of Random Forest?
20. What is the purpose of pruning in decision trees?
21. What is the role of the root node in a decision tree?
22. What technique does Random Forest use to create multiple decision trees?
23. How does Random Forest select features for each split in a decision tree?
24. What is the main objective of a Support Vector Machine (SVM)?
25. How does the choice of kernel affect the SVM model?